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Regulation Under Asymmetric Information in Water Utilities

by I. Brocas, K. Chan and I. Perrigne*

Water utilities are reminiscent of network industries and are characterized by important

fixed costs. These factors contribute to a single firm serving an area justifying public in-

tervention on pricing. About one fourth of U.S. water utilities is private and subject to

regulation. Regulators are unlikely to be perfectly informed and regulation is unlikely to

be costlessly implemented. These inherent imperfections have lead economists to consider

the incentive properties of regulatory procedures using the economics of information. See

David Baron (1989). The empirical literature on regulation has focused on evaluating the

effects of regulation on prices, firms’ costs, efficiency and innovation in sectors such as airline,

electricity and energy as surveyed by Paul Joskow and Nancy Rose (1989). Few of these

empirical studies rely on the socalled theory of regulation. Regarding the water industry,

there is an abundant literature on residential water demand, firms’ cost and their efficiency

given their public versus private nature. Relying on a model with asymmetric information

and a sample of California water utilities, Frank Wolak (1994) assesses the consumer welfare

loss due to asymmetric information and shows that the model with asymmetric information

provides a superior description of the cost and demand data than the model under perfect

information. Analyzing pricing for residential water is an important policy issue as the sector

experienced recently price increases. The problem is even more acute in California because

of a high residential demand for water coupled with population growth, water scarcity and

the probability of severe droughts.

Relying on a new data set of 32 districts in California over 1995-2000, we analyze regula-

tion of private water utilities. For every district, the California Public Utilities Commission

(CPUC) chooses a price for water, an access fee per meter and a rate of return on capital

to satisfy firm’s revenue requirements. We assume that the CPUC is imperfectly informed

about firms’ labor efficiency. Following David Besanko (1984) and Wolak (1994), we develop

a model in which the firm’s capital is used as a screening variable. In particular, the model

has the features of a rate-of-return regulation. We show how the rate of return and the

access fee can be determined optimally to control firms’ rents. We then adopt a structural
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approach to analyze the data. A multistep estimator allows us to estimate the key parame-

ters of the model. The empirical results show price inelasticity, an income effect, slightly

decreasing returns to scale and a concentration of efficient firms. The computation of the

optimal rate of return and access fee shows that the CPUC would tend to be cautious by al-

lowing a lower than optimal rate and access fee. Relying on the estimated parameters, a first

experiment evaluates the cost of asymmetric information. The price would be significantly

lower resulting in a gain of consumer surplus. A second experiment consists in simulating

the outcome of an optimal price cap following Farid Gasmi, Mark Kennet, Jean-Jacques

Laffont and William Sharkey (2002) model. Price cap has become a popular regulatory tool

in the eighties such as for electricity though the incentives resulting in price cap regulation

have been questioned by economists. The counterfactual simulations show a price increase,

which results in a significant loss in consumer surplus. The increase in firms’ profit does not,

however, counterbalance this loss supporting the relevance of the actual mechanism.

A first section briefly presents the data and the regulatory process. A second section

introduces the model and the econometric modeling, while a third section is devoted to the

empirical results and policy simulations.

I. Data

Class A utilities are serving more than 10,000 residential connections and are required to

submit annual reports on their capital stock including water sources and operating costs.

The rate cases provide information on water price, meter price or access fee, rate of return

as well as the interest rate on investment paid by the utility. See Wolak (1994) for the

regulatory process used by the CPUC. The CPUC is in charge of protecting the consumers’

interests by challenging any claim made by utilities through the general rate cases. The

CPUC also exercises some control over the utility’s capital stock. The important role played

by the capital suggests that the regulator uses the utility’s capital stock as a sreening variable

in the spirit of Besanko (1984) model. There is an important heterogeneity in the quality

of labor across the districts. It is expected that the utilities are better informed about the

labor quality than the regulator. Annual reports do not provide complete information on

labor costs. Out of the 58 districts regulated by the CPUC, 32 districts are served by the

2



California Water Company and the Southern California Water Company. Because additional

information could be obtained from both companies, we focus on these 32 districts from 1995

to 2000 making a total of 192 observations. Data on income per capita and rainfall have been

collected from the Bureau of Economic Analysis, Department of Commerce and the Water

Resources of California, respectively. All the data have been deflated and are expressed in

1995 dollars. Table 1 provides summary statistics on the key variables. The data present an

important variability over districts. An hedonic price model shows that the price of water

tends to be larger in Southern California and rural areas than in Northern California and

urban areas. The former can be explained by the scarcity of water sources, while the latter is

due to additional capital in pipes. A comparison of capital stock with variable cost shows a

large capital requirement. Energy expenses represent an important proportion of operating

costs because of water pumping. The energy price is measured as the ratio of the energy

expenses per foot of pipe. The rate of return, which varies from 0.089 and 0.113, is always

larger than the price of capital, which varies from 0.079 and 0.103. Districts have applied

for rate cases on average 5.47 times, i.e. almost once a year, suggesting frequent revisions of

prices and rates of return by the CPUC.

II. The Model and Econometric Modeling

We consider a model in the spirit of Baron and Roger Myerson (1982) and Besanko (1984).

The plant is privately informed about its labor efficiency or type θ distributed as F (·) on [θ, θ],

where θ (θ) denotes the most (least) efficient plant. The plant chooses a level of capitalK that

is observable and can be contracted upon. Investing K costs δK. The cost is C(θ,K, q, εc)

where q is the quantity demanded by consumers and εc is a stochastic shock. It is increasing

in θ and q and decreasing in K. The demand q(p, εd) is subject to a stochastic shock εd.

The regulator offers a scheme [p(K), T (K), R(K)] where p(K) is the price per unit, T (K)

is the total access fee and R(K) is the rate-of-return on capital. Then, the plant’s expected

payoff is U = p(K)E[q(p(K), εd)]−E[C(θ,K, q(p(K), εd), εc)]−δK+T (K) where E(·) denotes

expectations with respect to εd and εc. The rate-of-return satisfies the revenue requirement

Ep(K)[q(p(K), εd)] − E[C(θ,K, q(p(K), εd), εc)] + T (K) = R(K)K. Given the scheme, a

plant with type θ chooses a level of capital K(θ) and in equilibrium, it is allowed to charge
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p(K(θ)) ≡ p(θ) and T (K(θ)) ≡ T (θ) and is entitled to R(K(θ)) ≡ R(θ). Because the CPUC

protects consumers’ interests, the regulator’s objective is to maximize consumers’ surplus

while satisfying the revenue requirement and anticipating the plant’s strategic response.

Proposition 1:The rate-of-return regulation yields K∗(θ), p∗(θ), T ∗(θ) and R∗(θ) satisfying

p∗(θ)E[qp(p
∗(θ), εd] = E[Cq(θ,K

∗(θ), q(p∗(θ), εd), εc)qp(p
∗(θ), εd)]

+E[Cθq(θ,K
∗(θ), q(p∗(θ), εd), εc)qp(p

∗(θ), εD)]
F (θ)

f(θ)
,

δ = −E[CK(θ,K∗(θ), q(p∗(θ), εd), εc)]

−E[CθK(θ,K∗(θ), q(p∗(θ), εd), εc)]
F (θ)

f(θ)
,

T ∗(θ) = −E[q(p∗(θ), εd)]p
∗(θ)) + E[C(θ,K∗(θ), q(p∗(θ), εd), εc)]

+R∗(θ)K∗(θ),

R∗(θ)K∗(θ) = δK∗(θ) +
∫ θ

θ
E[Cθ(s,K

∗(s), q(p∗(s), εd), εc)]ds+ [R∗(θ) − δ]K∗(θ),

where R∗(θ) is a constant left to the discretion of the regulator.1

In the presence of asymmetric information, the regulator must grant rents to induce

the plant to make optimal decisions. The revenue requirement can be rewritten as U =

[R(θ)− δ]K(θ), and therefore the rate-of-return determines by which amount total revenues

must exceed cost and guarantees each plant is provided correct incentives. Overall, the rate-

of-return regulation is the optimal second-best policy. Note, however, that the policy does

not include a non-negative profit requirement and the regulator can choose arbitrarily R∗(θ)

so that the least efficient plants make losses.

Given its popularity over the past twenty years, we also consider the price cap regulation

as in Gasmi et al. (2002). In that case, the regulator sets a price cap p and the plant is free

to choose K as well as any price below p. In the optimal price cap, the most efficient plants

charge their monopoly prices and only less efficient plants are constrained by the cap.

Proposition 2: In the pure price cap regulation,

(i) there exists θ̂ such that ∀ θ < θ̂, the plant charges pM(θ) and invests KM(θ) where

pM(θ) E[qp(p
M(θ), εd)] + E[q(pM(θ), εd)] = E[Cq(θ,K

M(θ), q(pM(θ), εd), εc)qp(p
M(θ), εd)]

δ = −E[CK(θ,KM(θ), q(pM(θ), εd), εc)]
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and ∀ θ ≥ θ̂, the plant charges p and invests K(θ, p) where δ = −E[CK(θ,K(θ, p), q(p, εd), εc)],

(ii) p is such that E[q(p, εd)]p− E[C(θ,K(θ, p), q(p, εd), εc)] − δK(θ, p) = 0,

(iii) θ̂ is such that pM(θ̂) = p.

We adopt a structural approach to estimate the model, i.e. the econometric model is

directly derived from Proposition 1. The error terms are given by the random shocks εd

and εc and θ, which can be interpreted as a term of unobserved heterogeneity. We fol-

low Perrigne (2002) identification strategy and estimation procedure. The basic idea is

to parameterize the model structure [q(·), C(·), F (·)], while minimizing the assumptions on

εd and εc and exploiting the independence of εd and θ. We consider a demand function

with constant price elasticity, q(p, εd) = exp(d0)Z
d1
d p

d2 exp(εd), where Zd is a vector of ex-

ogenous variables. We consider a Cobb-Douglas technology, in which the adverse selec-

tion variable affects labor efficiency. This gives the variable cost function C(θ, q,K, εc) =

exp(β0) exp(βLθ)p
βL
L pβE

E q(p)βyK−βKZβc
c exp(εc), where pE and pL denote the price for energy

and labor, respectively and Zc is a vector of exogenous variables. Homogeneity of degree

1 can be imposed. Regarding the firms’ type density, we choose a Gamma density for

its flexibility, i.e. f(θ; r, γ) = γ(γθ)r−1 exp(−γθ)/Γ(r), where r is a positive integer and

Γ(r) =
∫ ∞
0 xr−1 exp(−x)dx.

Given the multiplicative random shocks, it is natural to assume E[exp(εd)|Z] = 1 and

E[exp(εc)|Z] = 1, where Z is a vector of exogenous variables. We do not make any distribu-

tional assumption on εd and εc. Identification of the model relies on the independence of θ

and εd conditionally on Z, i.e. θ ⊥ εd|Z. In addition to the demand and cost, the price and

capital equations in Proposition 1 define the econometric model.2 Because p(θ) and K(θ)

can create a problem of endogeneity, we need to solve the system in p and K given θ. Given

the potential measurement error on capital, we prefer to use the price equation. Thus, the

econometric model is made of the demand, cost and price equations while the error terms

are εd, εc and θ. It gives

qi = exp(d0)Z
d1
di p

d2
i exp(εdi) (D)

Ci = exp(β0)p
βL
Li p

βE
Ei q

βy

i K−βK
i Zβc

ci exp(βLθi) exp(εci), (C)

log pi =
1

(d2 + 1)(βK + 1) − d2βy

{
η + βL log pLi + βE log pEi + βc logZci
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+(d1βy − d1βK − d1) logZdi + βK log δi + ξ(θi; r, γ)

}
, (P )

i = 1, . . . , 192, where η = −βK log βK + (βK + 1) log βy + β0 + d0(βy − βK − 1) + logEP ,

EP = E[exp(βyεd + εc)], and ξ(θ) = βLθ + log[1 + βL(F (θ; r, γ)/f(θ; r, γ))]. Note that pi in

(D) is not endogenous because p(θi) and θi ⊥ εdi|Z.

The parameters to be estimated are (d0, d1, d2, β0, βL, βE, βK, βc, r, γ), while the observ-

ables are (qi,Zdi, Ci, pLi, pEi, δi,Zci, i = 1, . . . , 192). The estimation method is multistep.

Using E(exp(εdi)|Zi) = 1, the first step estimates d0, d1 and d2 using a Nonlinear GMM

estimator. Using the orthogonality condition θi ⊥ εdi|Zi, the second step estimates βL, βE,

βc and βK using a Linear GMM estimator. The third step estimates β0 + logEP and (r, γ).

Note that (P) provides log pi = ψ(θi; β0 + logEP , r, γ), since the other terms in (P) are

either observed or estimated. For r = 1, 2, . . ., a Method of Simulated Moments is used to

estimate (β0 + logEP , γ). The computation of additional moments allows us to assess the

best adjustment for r. Using these estimates, we can recover θi, i = 1, . . . , 192 from (P).3

III. Estimation Results and Policy Experiments

Estimation results are displayed in Table 2. The demand parameters have the expected mag-

nitude. The demand is quite inelastic with a price elasticity at -0.29 as found in previous stud-

ies. There is a significant revenue effect with a revenue elasticity at 0.52. Households living in

Northern California tend to consume less water than in Southern California. The ratio popu-

lation by pipe footage is used as a proxy for population density. Thus, larger population den-

sity areas tend to consume less water with an elasticity equal to -0.20. The production process

tends to exhibit decreasing returns to scale though they could be considered as constant.

Since homogeneity is imposed, the parameter for capital is equal to 0.3249. Rainfall has a

negative impact on costs as districts with more rainfall are expected to have water sources in

proximity thereby reducing costs. The case r = 1 provides the best fit with γ equal to 1.04

giving E(θ) = 0.9617 suggesting a concentration of efficient firms. These results can be used

to assess whether the regulator has implemented the optimal regulation through T and R.

After elementary algebra, R∗(θ) = δ + [(
∫ θ
θ E[Cθ(s,K

∗(s), q(p∗(s), εd), εc)]ds+U(θ))/K∗(θ)],

where U(θ) is the profit value for the least efficient firm and T ∗(θ) is given in Proposition 1.

The optimal monthly access fee and the optimal rate of return should be equal on average to
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$19 and 0.14, respectively. Both values are somewhat larger than observed ones (see Table

1) with a larger range of values leading to more discrimination among firms. These results

suggest that (i) the model provides a reasonable fit to the data, and (ii) the CPUC tends to

be cautious in the rents given to firms.

Under complete information, the price would be about 10.7% less on average than the

observed one resulting in an increase of 3% in water consumption. The monthly access fee

would be also at about $4. These two factors lead to an increase in consumer surplus by

6.7% while considering a maximum consumers’ willingness to pay for water at $10. The

capital stock would be about 16.9% lower, while the firms’ profit would be equal to zero by

definition. We note the parallel with the Averch-Johnson effect. Overcapitalization follows

asymmetric information and allows firms to self-select in the desired way. As such, the

cost of asymmetric information is quite substantial. The simulation of a price cap under

asymmetric information leads to a uniform water price at about $2.8. All the firms would be

subject to the cap as their monoply prices would take larger values than p. This larger price

would result in a reduction of expected consumption by 30% and a reduction in consumer

surplus by 23%. The capital stock chosen by firms would be about 35% less as it would

be not be subject to any distortion. This would result in a substantial increase in firms’

profit. When considering the social welfare defined as the sum of the consumer surplus and

the firms’ profit, this increase in firms’ profit does not, however, counterbalance the loss in

consumer surplus. As such, our results suggest that the actual regulation provides a superior

outcome.
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1 The lower index refers to the partial derivative of the function.

2 Note that (p, q, C,K, T, R) are endogeneously determined by the model, while the econo-

metric model contains only three error terms leading to a singular model. We consider only

the three equations determining (q, p, C).

3 This multi-step estimation procedure does not provide valid standard errors except for the

first step. Bootstrap methods can be used to compute standard errors.
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Table 1 – Summary Statistics

Variable Mean STD

Population 68,635.87 76,712.70

Income per Capita 19,216.99 7,589.44

Rainfall (in inches) 40.00 23.80

Water delivered (in hundred cubic feet) 5,073,353.52 5,629,467.36

Water Price 1.17 0.62

Meter Price 9.88 5.24

Capital Stock 22,401,770.35 21,957,186.28

Footage of Pipeline 1,111,151.71 1,068,542.94

Variable Cost 5,548,544.59 6,952,976.35

Labor Price 25,472.15 11,922.65

Energy Price 0.51 0.35

Capital Price 0.09 0.006

Rate of Return 0.10 0.006

Table 2 – Estimation Results

Variable Coefficient t-ratio

Constant -1.5738 -1.66

Water Price -0.2946 -4.96

Population 1.0285 37.77

Income 0.5155 5.60

North -0.2014 -3.49

Population/Pipe -0.2039 -3.18

Labor Price 0.1975 2.63

Energy Price 0.4776 3.38

Water 1.2590 4.78

Rainfall -0.0028 -0.01

γ (r = 1) 1.0434 0.35
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